Zongliang Hu, PhD
School of Mathematics and Statistics
Shenzhen University, Nanshan District, Shenzhen
Office: Room 313, Science and Technology Building
Phone: (075) 2653-2674
Email: zlhu(at)szu.edu.cn
2025年招生计划
课题一:临床实验设计
1.剂量探索:在新药研发的过程中,一期临床实验的宗旨在于探索药物毒性和剂量,从而选择出针对人类
使用药物的最佳剂量。本课题从贝叶斯最优区间设计入手,探索最佳剂量的确定方案;
2.篮子实验设计:篮子研究是将相同靶基因的不同肿瘤放入一个篮子里,应用潜在作用于该靶点的实验药物,
评估其疗效和安全性,其目的就是研究可以治疗多种疾病或者疾病亚型的靶向疗法,属于精准医学领域。
课题二:异常检验
针对函数型数据,开发一种新的在线异常检验方法。
课题三:基于深度生成模型的金融安全与风险管理
探索利用和创新AIGC中常见的生成算法,例如,VAE、GAN、Normalizing Flow 和 Diffusion Model,针对时间序列数据,
开发新模型,计算风险指标,例如,VaR (Value at Risk), ES (Expected Shortfall) 和 CVaR (Conditional Value at Risk),
对时序数据的尾部风险进行评估,也可以对具有外部图结构的多元时间序列构成的系统进行风险评估。
本课题也可以与异常检验相互交叉。
Professional Experience
2018- Assistant Professor, School of Mathematics and Statistics, Shenzhen University
Academic Qualification
PhD in Statistics (2018), Department of Mathematics, Hong Kong Baptist University
MSc in Statistics (2015), School of Finance and Statistics, East China Normal University
BSc in Mathematics (2012), School of Mathematics, Qufu Normal University
Research Interests
Statistical inference for high-dimensional data
Meta-analysis and multi-source data integration
Statistical learning and its application in online anomaly detection
Grants (Principal Investigator)
Natural Science Foundation of Gangdong Province (No.2023A1515010027), 2023-2025.
National Natural Science Foundation of China (No.12001378), 2021-2023.
Guangdong Basic and Applied Basic Research Foundation (No.2019A1515110449), 2019-2022.
Grant for the Construction of High-Level University, 2020-2023.
Initiation Grant for Youth Scholars of Shenzhen University, 2019-2020.
Publications
Yan Zhou, Ruoxi Mei, Yichuan Zhao, Zongliang Hu* and Mingtao Zhao* (2024)
Orthogonality-based bias-corrected empirical likelihood inference for
partial linear varying coefficient EV models with longitudinal data
Journal of Computational and Applied Mathematics, 443: 115751.
Zongliang Hu, Yafang Wu and Yan Zhou (2024)
Meta-analyzing RNA-seq studies with an adaptive weighting-and-truncation p-value combination test
Applied Mathematical Modelling, 136: 115611.
Zongliang Hu, Yiping Yang, Gaorong Li and Tiejun Tong (2023)
Regularized t distribution: definition, properties and applications
Scandinavian Journal of Statistics, 50: 1884-1900.
Zongliang Hu, Tiejun Tong and Marc G. Genton (2024)
A pairwise Hotelling method for testing high-dimensional mean vectors
Statistica Sinica, 34: 229-256.
Guanfu Liu and Zongliang Hu* (2023)
Testing quantitative trait locus effects in genetic backcross studies with double recombination occurring
Journal of Applied Statistics, 50:927-944.
Rongji Mu, Zongliang Hu*, Guoying Xu and Haitao Pan* (2021)
An adaptive gBOIN design with shrinkage boundaries for phase I dose-finding trials
BMC Medical Research Methodology, 21:278.
Zongliang Hu, Yan Zhou and Tiejun Tong (2021)
Meta-analyzing multiple omics data with robust variable selection
Frontiers in Genetics, 12: 656826.
Zongliang Hu, Zhishui Hu, Kai Dong, Tiejun Tong and Yuedong Wang (2021)
A shrinkage approach to joint estimation of multiple covariance matrices
Metrika, 84: 339-374.
Jiajin Wei, Enxuan Lin, Jiandong Shi, Ke Yang, Zongliang Hu, Xian-Tao Zeng and Tiejun Tong (2021)
Meta-analysis with zero-event studies: a comparative study with application to COVID-19 data
Military Medical Research, 8: 41.
Dongdong Xiang, Amitava Mukherjee, Zongliang Hu, Wendong Li (2021)
Online anomaly detection of profiles with varying coefficients via functional mixed effects modelling
Applied Mathematical Modelling, 9: 467-484.
Zongliang Hu, Tiejun Tong and Marc G. Genton (2019)
Diagonal likelihood ratio test for equality of mean vectors in high-dimensional data
Biometrics, 75: 256-267.
Zongliang Hu, Kai Dong, Wenlin Dai and Tiejun Tong (2017)
A comparison of methods for estimating the determinant of high-dimensional covariance matrix
International Journal of Biostatistics, 13: 20170013.
MathSciNet |
Web of Science |
Statistics Journals |
Google |
CNKI |
Free Ebook |
Other Links |